{ "id": "0911.4338", "version": "v3", "published": "2009-11-23T08:36:53.000Z", "updated": "2010-11-03T13:52:35.000Z", "title": "Configuration-like spaces and coincidences of maps on orbits", "authors": [ "R. N. Karasev", "A. Yu. Volovikov" ], "journal": "Algebraic & Geometric Topology, 11, 2011, 1033-1052", "doi": "10.2140/agt.2011.11.1033", "categories": [ "math.AT" ], "abstract": "In this paper we study the spaces of $q$-tuples of points in a Euclidean space, without $k$-wise coincidences (configuration-like spaces). A transitive group action by permuting these points is considered, and some new upper bounds on the genus (in the sense of Krasnosel'skii--Schwarz and Clapp--Puppe) for this action are given. Some theorems of Cohen--Lusk type for coincidence points of continuous maps to Euclidean spaces are deduced.", "revisions": [ { "version": "v3", "updated": "2010-11-03T13:52:35.000Z" } ], "analyses": { "subjects": [ "55R80", "57S17", "14N20" ], "keywords": [ "configuration-like spaces", "euclidean space", "cohen-lusk type", "upper bounds", "transitive group action" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.4338K" } } }