{ "id": "0911.4170", "version": "v3", "published": "2009-11-21T09:55:23.000Z", "updated": "2011-03-13T09:34:37.000Z", "title": "Isotropy of orthogonal involutions", "authors": [ "Nikita A. Karpenko" ], "comment": "13 pages", "categories": [ "math.AG", "math.RA" ], "abstract": "An orthogonal involution on a central simple algebra becoming isotropic over any splitting field of the algebra, becomes isotropic over a finite odd degree extension of the base field (provided that the characteristic of the base field is not 2). The proof makes use of a structure theorem for Chow motives with finite coefficients of projective homogeneous varieties, of incompressibility of certain generalized Severi-Brauer varieties, and of Steenrod operations.", "revisions": [ { "version": "v3", "updated": "2011-03-13T09:34:37.000Z" } ], "analyses": { "subjects": [ "14L17", "14C25" ], "keywords": [ "orthogonal involution", "finite odd degree extension", "base field", "central simple algebra", "generalized severi-brauer varieties" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.4170K" } } }