{ "id": "0911.2778", "version": "v1", "published": "2009-11-14T15:11:01.000Z", "updated": "2009-11-14T15:11:01.000Z", "title": "On $\\ell^{p}$-like equivalence relations", "authors": [ "Tamás Mátrai" ], "categories": [ "math.LO", "math.CO" ], "abstract": "For $f \\colon [0,1] \\rar \\real^{+}$, consider the relation $\\mathbf{E}_{f}$ on $[0,1]^{\\omega}$ defined by $(x_{n}) \\mathbf{E}_{f} (y_{n}) \\Leftrightarrow \\sum_{n < \\omega} f(|y_{n} - x_{n}|) < \\infty.$ We study the Borel reducibility of Borel equivalence relations of the form $\\mathbf{E}_{f}$. Our results indicate that for every $1 \\leq p < q < \\infty$, the order $\\leq_{B}$ of Borel reducibility on the set of equivalence relations $\\{\\bE \\colon \\bE_{\\Id^{p}} \\leq_{B} \\bE \\leq_{B} \\bE_{\\Id^{q}}\\}$ is more complicated than expected, e.g. consistently every linear order of cardinality continuum embeds into it.", "revisions": [ { "version": "v1", "updated": "2009-11-14T15:11:01.000Z" } ], "analyses": { "subjects": [ "03E15", "46A45" ], "keywords": [ "borel reducibility", "cardinality continuum embeds", "borel equivalence relations", "linear order" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.2778M" } } }