{ "id": "0911.2749", "version": "v1", "published": "2009-11-14T07:36:43.000Z", "updated": "2009-11-14T07:36:43.000Z", "title": "The $S^1$-Equivariant Cohomology of Spaces of Long Exact Sequences", "authors": [ "T. B. Williams" ], "categories": [ "math.AT", "math.AC" ], "abstract": "Let $S$ denote the graded polynomial ring $\\C[x_1,...,x_m]$. We interpret a chain complex of free $S$-modules having finite length homology modules as an $S^1$-equivariant map $\\C^m\\sm\\{0\\} \\to X$, where $X$ is a moduli space of exact sequences. By computing the cohomology of such spaces $X$ we obtain obstructions to such maps, including a slight generalization of the Herzog-K\\\"uhl equations.", "revisions": [ { "version": "v1", "updated": "2009-11-14T07:36:43.000Z" } ], "analyses": { "subjects": [ "55N91" ], "keywords": [ "long exact sequences", "equivariant cohomology", "finite length homology modules", "slight generalization", "chain complex" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.2749W" } } }