{ "id": "0911.2313", "version": "v1", "published": "2009-11-12T08:13:31.000Z", "updated": "2009-11-12T08:13:31.000Z", "title": "Riesz meets Sobolev", "authors": [ "Thierry Coulhon", "Adam Sikora" ], "categories": [ "math.AP" ], "abstract": "We show that the $L^p$ boundedness, $p>2$, of the Riesz transform on a complete non-compact Riemannian manifold with upper and lower Gaussian heat kernel estimates is equivalent to a certain form of Sobolev inequality. We also characterize in such terms the heat kernel gradient upper estimate on manifolds with polynomial growth.", "revisions": [ { "version": "v1", "updated": "2009-11-12T08:13:31.000Z" } ], "analyses": { "subjects": [ "58J35", "42B20", "46E35" ], "keywords": [ "riesz meets sobolev", "heat kernel gradient upper estimate", "lower gaussian heat kernel estimates", "complete non-compact riemannian manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.2313C" } } }