{ "id": "0911.2274", "version": "v3", "published": "2009-11-11T23:52:42.000Z", "updated": "2010-12-06T07:20:44.000Z", "title": "Principal series representations of metaplectic groups over local fields", "authors": [ "Peter J. McNamara" ], "comment": "24 pages, section 3 rewritten", "categories": [ "math.RT" ], "abstract": "Let G be a split reductive algebraic group over a non-archimedean local field. We study the representation theory of a central extension $\\G$ of G by a cyclic group of order n, under some mild tameness assumptions on n. In particular, we focus our attention on the development of the theory of principal series representations for $\\G$ and applications of this theory.", "revisions": [ { "version": "v3", "updated": "2010-12-06T07:20:44.000Z" } ], "analyses": { "subjects": [ "22E50", "20G25" ], "keywords": [ "principal series representations", "metaplectic groups", "split reductive algebraic group", "non-archimedean local field", "mild tameness assumptions" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.2274M" } } }