{ "id": "0911.1897", "version": "v1", "published": "2009-11-10T12:31:08.000Z", "updated": "2009-11-10T12:31:08.000Z", "title": "The longest excursion of fractional Brownian motion : numerical evidence of non-Markovian effects", "authors": [ "Reinaldo Garcia-Garcia", "Alberto Rosso", "Gregory Schehr" ], "comment": "4 pages, 4 figures", "journal": "Phys. Rev. E 81, 010102(R) (2010)", "doi": "10.1103/PhysRevE.81.010102", "categories": [ "cond-mat.stat-mech", "cond-mat.dis-nn" ], "abstract": "We study, using exact numerical simulations, the statistics of the longest excursion l_{\\max}(t) up to time t for the fractional Brownian motion with Hurst exponent 0 \\propto Q_\\infty t where Q_\\infty \\equiv Q_\\infty(H) depends continuously on H, and in a non trivial way. These results are compared with exact analytical results obtained recently for a renewal process with an associated persistence exponent \\theta = 1-H. This comparison shows that Q_\\infty(H) carries the clear signature of non-Markovian effects for H\\neq 1/2. The pre-asymptotic behavior of < l_{\\max}(t)> is also discussed.", "revisions": [ { "version": "v1", "updated": "2009-11-10T12:31:08.000Z" } ], "analyses": { "subjects": [ "05.40.-a", "02.50.-r", "05.70.Ln" ], "keywords": [ "fractional brownian motion", "longest excursion", "non-markovian effects", "numerical evidence", "non trivial way" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review E", "year": 2010, "month": "Jan", "volume": 81, "number": 1, "pages": "010102" }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010PhRvE..81a0102G" } } }