{ "id": "0911.1434", "version": "v1", "published": "2009-11-07T17:46:04.000Z", "updated": "2009-11-07T17:46:04.000Z", "title": "Instant Multiple Zeta Values at Non-Positive Integers and Bernoulli Functions", "authors": [ "Vivek V. Rane" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "We give an instant evaluation of multiple Zeta function at non-positive integers by elementary methods and discuss the Fourier theory (on unit interval) of the product of Bernoulli polynomials.We also show that the polynomial expression for Hurwitz Zeta function(at non-positive integral values of the first variable) and the polynomial expression for Bernoulli polynomials are equivalent.", "revisions": [ { "version": "v1", "updated": "2009-11-07T17:46:04.000Z" } ], "analyses": { "subjects": [ "11M41" ], "keywords": [ "instant multiple zeta values", "non-positive integers", "bernoulli functions", "polynomial expression", "bernoulli polynomials" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.1434R" } } }