{ "id": "0911.0992", "version": "v2", "published": "2009-11-05T08:38:45.000Z", "updated": "2010-01-30T09:30:13.000Z", "title": "Superintegrable Hamiltonian systems with noncompact invariant submanifolds. Kepler system", "authors": [ "G. Sardanashvily" ], "comment": "23 pages", "journal": "Int. J. Geom. Methods Mod. Phys. v6 (2009) 1391-1420", "categories": [ "math-ph", "math.MP" ], "abstract": "The Mishchenko-Fomenko theorem on superintegrable Hamiltonian systems is generalized to superintegrable Hamiltonian systems with noncompact invariant submanifolds. It is formulated in the case of globally superintegrable Hamiltonian systems which admit global generalized action-angle coordinates. The well known Kepler system falls into two different globally superintegrable systems with compact and noncompact invariant submanifolds.", "revisions": [ { "version": "v2", "updated": "2010-01-30T09:30:13.000Z" } ], "analyses": { "keywords": [ "superintegrable hamiltonian systems", "noncompact invariant submanifolds", "admit global generalized action-angle coordinates", "kepler system falls" ], "tags": [ "journal article" ], "publication": { "doi": "10.1142/S0219887809004260", "journal": "International Journal of Geometric Methods in Modern Physics", "year": 2009, "number": 8, "pages": 1391 }, "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009IJGMM..06.1391S" } } }