{ "id": "0911.0511", "version": "v1", "published": "2009-11-03T07:27:49.000Z", "updated": "2009-11-03T07:27:49.000Z", "title": "$T$-adic exponential sums of polynomials in one variable", "authors": [ "Chunlei Liu", "Wenxin Liu" ], "categories": [ "math.NT", "math.AG" ], "abstract": "The $T$-adic exponential sum of a polynomial in one variable is studied. An explicit arithmetic polygon in terms of the highest two exponents of the polynomial is proved to be a lower bound of the Newton polygon of the $C$-function of the T-adic exponential sum. This bound gives lower bounds for the Newton polygon of the $L$-function of exponential sums of $p$-power order.", "revisions": [ { "version": "v1", "updated": "2009-11-03T07:27:49.000Z" } ], "analyses": { "subjects": [ "11L07", "11F30" ], "keywords": [ "polynomial", "newton polygon", "lower bound", "t-adic exponential sum", "explicit arithmetic polygon" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.0511L" } } }