{ "id": "0911.0342", "version": "v3", "published": "2009-11-02T16:01:59.000Z", "updated": "2010-01-13T12:05:35.000Z", "title": "On the irreducible Specht modules for Iwahori--Hecke algebras of type A with $q=-1$", "authors": [ "Matthew Fayers" ], "journal": "J. Algebra 323 (2010) 1839-1844", "doi": "10.1016/j.jalgebra.2010.01.009", "categories": [ "math.RT" ], "abstract": "Let $p$ be a prime and $\\mathbb{F}$ a field of characteristic $p$, and let $\\mathcal{H}_n$ denote the Iwahori--Hecke algebra of the symmetric group $\\mathfrak{S}_n$ over $\\mathbb{F}$ at $q=-1$. We prove that there are only finitely many partitions $\\lambda$ such that both $\\lambda$ and $\\lambda'$ are 2-singular and the Specht module $S^\\lambda$ for $\\mathcal{H}_{|\\la|}$ is irreducible.", "revisions": [ { "version": "v3", "updated": "2010-01-13T12:05:35.000Z" } ], "analyses": { "subjects": [ "20C08", "05E10" ], "keywords": [ "irreducible specht modules", "iwahori-hecke algebra", "symmetric group", "characteristic" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.0342F" } } }