{ "id": "0910.5731", "version": "v1", "published": "2009-10-29T20:20:51.000Z", "updated": "2009-10-29T20:20:51.000Z", "title": "Uniqueness theorem for inverse scattering problem with non-overdetermined data", "authors": [ "A. G. Ramm" ], "categories": [ "math-ph", "math.MP" ], "abstract": "Let $q(x)$ be real-valued compactly supported sufficiently smooth function, $q\\in H^\\ell_0(B_a)$, $B_a:=\\{x: |x|\\leq a, x\\in R^3$ . It is proved that the scattering data $A(-\\beta,\\beta,k)$ $\\forall \\beta\\in S^2$, $\\forall k>0$ determine $q$ uniquely. here $A(\\beta,\\alpha,k)$ is the scattering amplitude, corresponding to the potential $q$.", "revisions": [ { "version": "v1", "updated": "2009-10-29T20:20:51.000Z" } ], "analyses": { "subjects": [ "35P25", "35R30", "81Q05" ], "keywords": [ "inverse scattering problem", "uniqueness theorem", "non-overdetermined data", "compactly supported sufficiently smooth function" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/1751-8113/43/11/112001", "journal": "Journal of Physics A Mathematical General", "year": 2010, "month": "Mar", "volume": 43, "number": 11, "pages": 112001 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010JPhA...43k2001R" } } }