{ "id": "0910.5489", "version": "v2", "published": "2009-10-28T20:40:52.000Z", "updated": "2009-11-13T00:38:42.000Z", "title": "Beauville surfaces and finite groups", "authors": [ "Yolanda Fuertes", "Gareth Jones" ], "comment": "18 pages. Second version acknowledges overlap with work of Garion and Penegini (arXiv:0910.5402) and corrects statements of results about linear groups over small fields", "categories": [ "math.GR", "math.AG" ], "abstract": "Extending results of Bauer, Catanese and Grunewald, and of Fuertes and Gonz\\'alez-Diez, we show that Beauville surfaces of unmixed type can be obtained from the groups L_2(q) and SL_2(q) for all prime powers q>5, and the Suzuki groups Sz(2^e) and the Ree groups R(3^e) for all odd e>1. We also show that L_2(q) and SL_2(q) admit strongly real Beauville structures, yielding real Beauville surfaces, if and only if q>5.", "revisions": [ { "version": "v2", "updated": "2009-11-13T00:38:42.000Z" } ], "analyses": { "subjects": [ "20D06", "14J29", "30F10" ], "keywords": [ "finite groups", "admit strongly real beauville structures", "yielding real beauville surfaces", "suzuki groups", "prime powers" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.5489F" } } }