{ "id": "0910.5313", "version": "v2", "published": "2009-10-28T09:23:37.000Z", "updated": "2010-04-03T15:15:09.000Z", "title": "Equivalence of norms on finite linear combinations of atoms", "authors": [ "G. Mauceri", "S. Meda" ], "comment": "10 pages, revised argument", "categories": [ "math.FA" ], "abstract": "Let M be a space of homogeneous type and denote by F^\\infty_{cont}(M) the space of finite linear combinations of continuous (1,\\infty)-atoms. In this note we give a simple function theoretic proof of the equivalence on F^\\infty_{cont}(M) of the H^1-norm and the norm defined in terms of finite linear combinations of atoms. The result holds also for the class of nondoubling metric measure spaces considered in previous works of A. Carbonaro and the authors.", "revisions": [ { "version": "v2", "updated": "2010-04-03T15:15:09.000Z" } ], "analyses": { "subjects": [ "42B30" ], "keywords": [ "finite linear combinations", "equivalence", "simple function theoretic proof", "nondoubling metric measure spaces", "result holds" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.5313M" } } }