{ "id": "0910.3956", "version": "v2", "published": "2009-10-20T20:21:03.000Z", "updated": "2009-12-25T23:02:31.000Z", "title": "On the energy conservation by weak solutions of the relativistic Vlasov-Maxwell system", "authors": [ "Reinel Sospedra-Alfonso" ], "comment": "article, 7 pages", "journal": "Commun. Math. Sci. 8(4):901-908 (2010)", "categories": [ "math.AP" ], "abstract": "We show that weak solutions of the relativistic Vlasov-Maxwell system preserve the total energy provided that the electromagnetic field is locally of bounded variation and, for any $\\lambda$> 0, the one-particle distribution function has a square integrable $\\lambda$-moment in the momentum variable.", "revisions": [ { "version": "v2", "updated": "2009-12-25T23:02:31.000Z" } ], "analyses": { "subjects": [ "35Q02" ], "keywords": [ "weak solutions", "energy conservation", "relativistic vlasov-maxwell system preserve", "one-particle distribution function", "total energy" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.3956S" } } }