{ "id": "0910.3892", "version": "v7", "published": "2009-10-20T19:58:40.000Z", "updated": "2011-04-13T14:17:43.000Z", "title": "p-adic valuations of some sums of multinomial coefficients", "authors": [ "Zhi-Wei Sun" ], "comment": "16 pages", "journal": "Acta Arith. 148(2011), 63-76", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $m$ and $n>0$ be integers. Suppose that $p$ is a prime dividing $m-4$ but not dividing $m$. We show that $\\nu_p(\\sum_{k=0}^{n-1}\\frac{\\binom{2k}k}{m^k})$ and $\\nu_p(\\sum_{k=0}^{n-1}\\binom{n-1}{k}(-1)^k\\frac{\\binom{2k}k}{m^k})$ are at least $\\nu_p(n)$, where $\\nu_p(x)$ denotes the $p$-adic valuation of $x$. Furthermore, if $p>3$ then $$n^{-1}\\sum_{k=0}^{n-1}\\frac{\\bi{2k}k}{m^k}=\\frac{\\binom{2n-1}{n-1}}{4^{n-1}} (mod p^{\\nu_p(m-4)})$$ and $$n^{-1}\\sum_{k=0}^{n-1}\\binom{n-1}{k}(-1)^k\\frac{\\binom{2k}k}{m^k}=\\frac{C_{n-1}}{4^{n-1}} (mod p^{\\nu_p(m-4)}),$$ where $C_k$ denotes the Catalan number $\\binom{2k}{k}/(k+1)$. This implies several conjectures of Guo and Zeng [GZ]. We also raise two conjectures, and prove that $n>1$ is a prime if and only if $$\\sum_{k=0}^{n-1}multinomial{(n-1)k}{k,...,k}=0 (mod n),$$ where $multinomial{k_1+...+k_{n-1}}{k_1,...,k_{n-1}}$ denotes the multinomial coefficient $(k_1+...+k_{n-1})!/(k_1!... k_{n-1}!)$.", "revisions": [ { "version": "v7", "updated": "2011-04-13T14:17:43.000Z" } ], "analyses": { "subjects": [ "11B65", "11A07", "05A10", "11S99" ], "keywords": [ "multinomial coefficient", "p-adic valuations", "catalan number", "conjectures" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.3892S" } } }