{ "id": "0910.3744", "version": "v2", "published": "2009-10-20T05:35:46.000Z", "updated": "2009-10-29T05:08:39.000Z", "title": "An infinity Laplace equation with gradient term and mixed boundary conditions", "authors": [ "Scott N. Armstrong", "Charles K. Smart", "Stephanie J. Somersille" ], "comment": "13 pages, minor mistakes and typos corrected", "categories": [ "math.AP" ], "abstract": "We obtain existence, uniqueness, and stability results for the modified 1-homogeneous infinity Laplace equation \\[ -\\Delta_\\infty u - \\beta |Du| = f, \\] subject to Dirichlet or mixed Dirichlet-Neumann boundary conditions. Our arguments rely on comparing solutions of the PDE to subsolutions and supersolutions of a certain finite difference approximation.", "revisions": [ { "version": "v2", "updated": "2009-10-29T05:08:39.000Z" } ], "analyses": { "subjects": [ "35J70" ], "keywords": [ "infinity laplace equation", "mixed boundary conditions", "gradient term", "mixed dirichlet-neumann boundary conditions", "finite difference approximation" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.3744A" } } }