{ "id": "0910.3463", "version": "v1", "published": "2009-10-19T05:52:32.000Z", "updated": "2009-10-19T05:52:32.000Z", "title": "The twisted conjugacy problem for pairs of endomorphisms in nilpotent groups", "authors": [ "V. Roman'kov", "E. Ventura" ], "categories": [ "math.GR" ], "abstract": "An algorithm is constructed that, when given an explicit presentation of a finitely generated nilpotent group $G,$ decides for any pair of endomorphisms $\\varphi, \\psi : G \\to G$ and any pair of elements $u, v \\in G,$ whether or not the equation $(x\\varphi)u = v (x\\psi)$ has a solution $x \\in G.$ Thus it is shown that the problem of the title is decidable. Also we present an algorithm that produces a finite set of generators of the subgroup (equalizer) $Eq_{\\varphi, \\psi}(G) \\leq G$ of all elements $u \\in G$ such that $u \\varphi = u \\psi .$", "revisions": [ { "version": "v1", "updated": "2009-10-19T05:52:32.000Z" } ], "analyses": { "subjects": [ "20F10", "29F18" ], "keywords": [ "twisted conjugacy problem", "endomorphisms", "finitely generated nilpotent group", "finite set", "explicit presentation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.3463R" } } }