{ "id": "0910.3266", "version": "v1", "published": "2009-10-17T13:10:59.000Z", "updated": "2009-10-17T13:10:59.000Z", "title": "Dirichlet Heat Kernel Estimates for $Δ^{α/2}+ Δ^{β /2}$", "authors": [ "Zhen-Qing Chen", "Panki Kim", "Renming Song" ], "comment": "33 page", "categories": [ "math.PR", "math.AP" ], "abstract": "For $d\\geq 1$ and $0<\\beta<\\alpha<2$, consider a family of pseudo differential operators $\\{\\Delta^{\\alpha} + a^\\beta \\Delta^{\\beta/2}; a \\in [0, 1]\\}$ that evolves continuously from $\\Delta^{\\alpha/2}$ to $ \\Delta^{\\alpha/2}+ \\Delta^{\\beta/2}$. It gives arise to a family of L\\'evy processes \\{$X^a, a\\in [0, 1]\\}$, where each $X^a$ is the sum of independent a symmetric $\\alpha$-stable process and a symmetric $\\beta$-stable process with weight $a$. For any $C^{1,1}$ open set $D$, we establish explicit sharp two-sided estimates (uniform in $a\\in [0,1]$) for the transition density function of the subprocess $X^{a, D}$ of $X^a$ killed upon leaving the open set $D$. The infinitesimal generator of $X^{a, D}$ is the non-local operator $\\Delta^{\\alpha} + a^\\beta \\Delta^{\\beta/2}$ with zero exterior condition on $D^c$. As consequences of these sharp heat kernel estimates, we obtain uniform sharp Green function estimates for $X^{a, D}$ and uniform boundary Harnack principle for $X^a$ in $D$ with explicit decay rate.", "revisions": [ { "version": "v1", "updated": "2009-10-17T13:10:59.000Z" } ], "analyses": { "subjects": [ "60J35", "47G20", "60J75" ], "keywords": [ "dirichlet heat kernel estimates", "explicit sharp two-sided estimates", "uniform sharp green function estimates", "open set", "sharp heat kernel estimates" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.3266C" } } }