{ "id": "0910.3024", "version": "v1", "published": "2009-10-16T02:59:36.000Z", "updated": "2009-10-16T02:59:36.000Z", "title": "Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variables", "authors": [ "Francois Bergeron", "Aaron Lauve" ], "comment": "14 pages", "categories": [ "math.CO", "math.RA" ], "abstract": "We analyze the structure of the algebra N of symmetric polynomials in non-commuting variables in so far as it relates to its commutative counterpart. Using the \"place-action\" of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of N analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups.", "revisions": [ { "version": "v1", "updated": "2009-10-16T02:59:36.000Z" } ], "analyses": { "subjects": [ "05E05", "05E10", "16W30" ], "keywords": [ "symmetric polynomials", "non-commuting variables", "coinvariant spaces", "finite reflection groups", "tensor product decomposition" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.3024B" } } }