{ "id": "0910.2721", "version": "v2", "published": "2009-10-14T20:30:17.000Z", "updated": "2010-10-26T08:15:54.000Z", "title": "On ground states for the L^2-critical boson star equation", "authors": [ "Rupert L. Frank", "Enno Lenzmann" ], "comment": "Replaced version; see also http://arxiv.org/abs/1009.4042", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We consider ground state solutions $u \\geq 0$ for the $L^2$-critical boson star equation $$ \\sqrt{-\\Delta} \\, u - \\big (|x|^{-1} \\ast |u|^2 \\big) u = -u \\quad {in $\\R^3$}. $$ We prove analyticity and radial symmetry of $u$. In a previous version of this paper, we also stated uniqueness and nondegeneracy of ground states for the $L^2$-critical boson star equation in $\\R^3$, but the arguments given there contained a gap. However, we refer to our recent preprint \\cite{FraLe} in {\\tt arXiv:1009.4042}, where we prove a general uniqueness and nondegeneracy result for ground states of nonlinear equations with fractional Laplacians in $d=1$ space dimension.", "revisions": [ { "version": "v2", "updated": "2010-10-26T08:15:54.000Z" } ], "analyses": { "keywords": [ "critical boson star equation", "ground state solutions", "radial symmetry", "space dimension", "general uniqueness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.2721F" } } }