{ "id": "0910.2694", "version": "v2", "published": "2009-10-14T19:29:27.000Z", "updated": "2011-04-11T20:10:43.000Z", "title": "Shrinking targets for IETs: Extending a theorem of Kurzweil", "authors": [ "Jon Chaika" ], "comment": "22 pages. Substantially revised", "categories": [ "math.DS", "math.NT" ], "abstract": "This paper proves shrinking target results for IETs. Let {a_1\\geq a_2 \\geq...} be a sequence of positive real numbers with divergent sum. Then for almost every IET T, the limsup of B(T^ix,a_i) has full Lebesgue measure (where B(z, e) is the open ball around z of radius e). Related results are established including the analogous result for geodesic flows on a translation surface.", "revisions": [ { "version": "v2", "updated": "2011-04-11T20:10:43.000Z" } ], "analyses": { "subjects": [ "37E05", "37A25", "11J99" ], "keywords": [ "full lebesgue measure", "shrinking target results", "translation surface", "open ball", "positive real numbers" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.2694C" } } }