{ "id": "0910.1727", "version": "v2", "published": "2009-10-09T12:27:47.000Z", "updated": "2009-12-08T16:00:34.000Z", "title": "On certain permutation representations of the braid group", "authors": [ "Valentin Vankov Iliev" ], "comment": "10 pages, modified theorem, corrected typos", "categories": [ "math.GR", "math-ph", "math.MP" ], "abstract": "This paper is devoted to the proof of a structural theorem, concerning certain homomorphic images of Artin braid group on $n$ strands in finite symmetric groups. It is shown that any one of these permutation groups is an extension of the symmetric group on $n$ letters by an appropriate abelian group, and in \"half\" of the cases this extension splits.", "revisions": [ { "version": "v2", "updated": "2009-12-08T16:00:34.000Z" } ], "analyses": { "subjects": [ "20F36", "20E22" ], "keywords": [ "permutation representations", "artin braid group", "finite symmetric groups", "appropriate abelian group", "homomorphic images" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.1727V" } } }