{ "id": "0910.1562", "version": "v2", "published": "2009-10-08T18:11:18.000Z", "updated": "2009-11-12T06:44:09.000Z", "title": "Approximate Solutions to Second Order Parabolic Equations I: analytic estimates", "authors": [ "Radu Constantinescu", "Nick Costanzino", "Anna L Mazzucato", "Victor Nistor" ], "comment": "42 pages", "categories": [ "math.AP" ], "abstract": "We establish a new type of local asymptotic formula for the Green's function ${\\mathcal G}_t(x,y)$ of a uniformly parabolic linear operator $\\partial_t - L$ with non-constant coefficients using dilations and Taylor expansions at a point $z=z(x,y)$, for a function $z$ with bounded derivatives such that $z(x,x)=x \\in {\\mathbb R}^N$. For $z(x,y) =x$, we recover the known, classical expansion obtained via pseudo-differential calculus. Our method is based on dilation at $z$, Dyson and Taylor series expansions, and the Baker-Campbell-Hausdorff commutator formula. Our procedure leads to an elementary, algorithmic construction of approximate solutions to parabolic equations which are accurate to arbitrary prescribed order in the short-time limit. We establish mapping properties and precise error estimates in the exponentially weighted, $L^{p}$-type Sobolev spaces $W^{s,p}_a({\\mathbb R}^N)$ that appear in practice.", "revisions": [ { "version": "v2", "updated": "2009-11-12T06:44:09.000Z" } ], "analyses": { "subjects": [ "35K10", "35K08", "35Q84", "35S05", "02.30.Mv" ], "keywords": [ "second order parabolic equations", "approximate solutions", "analytic estimates", "type sobolev spaces", "precise error estimates" ], "tags": [ "journal article" ], "publication": { "doi": "10.1063/1.3486357", "journal": "Journal of Mathematical Physics", "year": 2010, "month": "Oct", "volume": 51, "number": 10, "pages": 3502 }, "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010JMP....51j3502C" } } }