{ "id": "0910.0813", "version": "v2", "published": "2009-10-05T17:54:53.000Z", "updated": "2010-01-13T15:46:04.000Z", "title": "On the paper \"Symmetry analysis of wave equation on sphere\" by H. Azad and M. T. Mustafa", "authors": [ "Igor Leite Freire" ], "comment": "Version accepted in J. Math. Anal. Appl", "categories": [ "math.AP", "math.DG" ], "abstract": "Using the scalar curvature of the product manifold S^{2}X R and the complete group classification of nonlinear Poisson equation on (pseudo) Riemannian manifolds, we extend the previous results on symmetry analysis of homogeneous wave equation obtained by H. Azad and M. T. Mustafa [H. Azad and M. T. Mustafa, Symmetry analysis of wave equation on sphere, J. Math. Anal. Appl., 333 (2007) 1180--1888] to nonlinear Klein-Gordon equations on the two-dimensional sphere.", "revisions": [ { "version": "v2", "updated": "2010-01-13T15:46:04.000Z" } ], "analyses": { "subjects": [ "76M60", "58J70", "35A30", "70G65" ], "keywords": [ "symmetry analysis", "complete group classification", "nonlinear klein-gordon equations", "nonlinear poisson equation", "product manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.0813L" } } }