{ "id": "0910.0810", "version": "v1", "published": "2009-10-05T17:38:18.000Z", "updated": "2009-10-05T17:38:18.000Z", "title": "On Lie Point Symmetries of Einstein's equations for the Friedmann-Roberstson-Walker Cosmology", "authors": [ "Paschalis G. Paschali", "Georgios C. Chrysostomou" ], "comment": "12 pages", "categories": [ "math-ph", "gr-qc", "math.MP" ], "abstract": "We study the Lie point symmetries of Einstein's equations for the Friedmann-Roberstson-Walker Cosmology. They form either a two - dimensional or a three - dimensional solvable group depending on the form of the self interacting potential. Using the invariants of the group we reduce the second order system of differential equations into a first order system. Writing the action in terms of the proper time we study the point symmetries and the variational symmetries of the resulting equations.", "revisions": [ { "version": "v1", "updated": "2009-10-05T17:38:18.000Z" } ], "analyses": { "keywords": [ "lie point symmetries", "einsteins equations", "friedmann-roberstson-walker cosmology", "second order system", "first order system" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.0810P" } } }