{ "id": "0910.0775", "version": "v1", "published": "2009-10-05T14:23:01.000Z", "updated": "2009-10-05T14:23:01.000Z", "title": "The Index Distribution of Gaussian Random Matrices", "authors": [ "Satya N. Majumdar", "Celine Nadal", "Antonello Scardicchio", "Pierpaolo Vivo" ], "comment": "4 pages Revtex, 4 .eps figures included", "journal": "Phys. Rev. Lett. 103, 220603 (2009)", "categories": [ "cond-mat.stat-mech", "cond-mat.dis-nn", "math-ph", "math.MP", "math.PR" ], "abstract": "We compute analytically, for large N, the probability distribution of the number of positive eigenvalues (the index N_{+}) of a random NxN matrix belonging to Gaussian orthogonal (\\beta=1), unitary (\\beta=2) or symplectic (\\beta=4) ensembles. The distribution of the fraction of positive eigenvalues c=N_{+}/N scales, for large N, as Prob(c,N)\\simeq\\exp[-\\beta N^2 \\Phi(c)] where the rate function \\Phi(c), symmetric around c=1/2 and universal (independent of $\\beta$), is calculated exactly. The distribution has non-Gaussian tails, but even near its peak at c=1/2 it is not strictly Gaussian due to an unusual logarithmic singularity in the rate function.", "revisions": [ { "version": "v1", "updated": "2009-10-05T14:23:01.000Z" } ], "analyses": { "subjects": [ "05.40.-a", "02.10.Yn", "05.45.Mt", "24.60.-k" ], "keywords": [ "gaussian random matrices", "index distribution", "rate function", "positive eigenvalues", "unusual logarithmic singularity" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review Letters", "doi": "10.1103/PhysRevLett.103.220603", "year": 2009, "month": "Nov", "volume": 103, "number": 22, "pages": 220603 }, "note": { "typesetting": "RevTeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009PhRvL.103v0603M" } } }