{ "id": "0910.0408", "version": "v1", "published": "2009-10-02T14:32:03.000Z", "updated": "2009-10-02T14:32:03.000Z", "title": "Composition operators on weighted Bergman spaces of a half plane", "authors": [ "Sam Elliott", "Andrew Wynn" ], "comment": "7 pages", "categories": [ "math.FA", "math.CV" ], "abstract": "We use induction and interpolation techniques to prove that a composition operator induced by a map $\\phi$ is bounded on the weighted Bergman space $\\A^2_\\alpha(\\mathbb{H})$ of the right half-plane if and only if $\\phi$ fixes $\\infty$ non-tangentially, and has a finite angular derivative $\\lambda$ there. We further prove that in this case the norm, essential norm, and spectral radius of the operator are all equal, and given by $\\lambda^{(2+\\alpha)/2}$.", "revisions": [ { "version": "v1", "updated": "2009-10-02T14:32:03.000Z" } ], "analyses": { "subjects": [ "47B33" ], "keywords": [ "weighted bergman space", "composition operator", "half plane", "right half-plane", "interpolation techniques" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.0408E" } } }