{ "id": "0910.0378", "version": "v1", "published": "2009-10-02T11:18:28.000Z", "updated": "2009-10-02T11:18:28.000Z", "title": "Optimal Consumption Problem in a Diffusion Short-Rate Model", "authors": [ "Daniel Synowiec" ], "comment": "36 pages, 2 figures", "categories": [ "math.OC" ], "abstract": "We consider a problem of an optimal consumption strategy on the infinite time horizon when the short-rate is a diffusion process. General existence and uniqueness theorem is illustrated by the Vasicek and so-called invariant interval models. We show also that when the short-rate dynamics is given by a Brownian motion or a geometric Brownian motion, then the value function is infinite.", "revisions": [ { "version": "v1", "updated": "2009-10-02T11:18:28.000Z" } ], "analyses": { "subjects": [ "93E20", "91B28", "49L20" ], "keywords": [ "diffusion short-rate model", "optimal consumption problem", "infinite time horizon", "invariant interval models", "optimal consumption strategy" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.0378S" } } }