{ "id": "0910.0155", "version": "v1", "published": "2009-10-01T12:25:30.000Z", "updated": "2009-10-01T12:25:30.000Z", "title": "Denjoy-Carleman differentiable perturbation of polynomials and unbounded operators", "authors": [ "Andreas Kriegl", "Peter W. Michor", "Armin Rainer" ], "comment": "8 pages", "journal": "Integral Equations and Operator Theory 71,3 (2011), 407-416", "doi": "10.1007/s00020-011-1900-5", "categories": [ "math.FA", "math.SP" ], "abstract": "Let $t\\mapsto A(t)$ for $t\\in T$ be a $C^M$-mapping with values unbounded operators with compact resolvents and common domain of definition which are self-adjoint or normal. Here $C^M$ stands for $C^\\om$ (real analytic), a quasianalytic or non-quasianalytic Denjoy-Carleman class, $C^\\infty$, or a H\\\"older continuity class $C^{0,\\al}$. The parameter domain $T$ is either $\\mathbb R$ or $\\mathbb R^n$ or an infinite dimensional convenient vector space. We prove and review results on $C^M$-dependence on $t$ of the eigenvalues and eigenvectors of $A(t)$.", "revisions": [ { "version": "v1", "updated": "2009-10-01T12:25:30.000Z" } ], "analyses": { "subjects": [ "26C10", "26E10", "47A55" ], "keywords": [ "denjoy-carleman differentiable perturbation", "unbounded operators", "infinite dimensional convenient vector space", "polynomials", "non-quasianalytic denjoy-carleman class" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.0155K" } } }