{ "id": "0910.0111", "version": "v2", "published": "2009-10-01T09:00:48.000Z", "updated": "2010-02-01T08:49:04.000Z", "title": "Random walk in two-dimensional self-affine random potentials : strong disorder renormalization approach", "authors": [ "Cecile Monthus", "Thomas Garel" ], "comment": "7 pages, 7 figures; v2=final version", "journal": "Phys. Rev. E 81, 011138 (2010)", "doi": "10.1103/PhysRevE.81.011138", "categories": [ "cond-mat.dis-nn" ], "abstract": "We consider the continuous-time random walk of a particle in a two-dimensional self-affine quenched random potential of Hurst exponent $H>0$. The corresponding master equation is studied via the strong disorder renormalization procedure introduced in Ref. [C. Monthus and T. Garel, J. Phys. A: Math. Theor. 41 (2008) 255002]. We present numerical results on the statistics of the equilibrium time $t_{eq}$ over the disordered samples of a given size $L \\times L$ for $10 \\leq L \\leq 80$. We find an 'Infinite disorder fixed point', where the equilibrium barrier $\\Gamma_{eq} \\equiv \\ln t_{eq}$ scales as $\\Gamma_{eq}=L^H u $ where $u$ is a random variable of order O(1). This corresponds to a logarithmically-slow diffusion $ | \\vec r(t) - \\vec r(0) | \\sim (\\ln t)^{1/H}$ for the position $\\vec r(t)$ of the particle.", "revisions": [ { "version": "v2", "updated": "2010-02-01T08:49:04.000Z" } ], "analyses": { "subjects": [ "05.40.-a", "05.45.Df", "05.60.-k" ], "keywords": [ "two-dimensional self-affine random potentials", "strong disorder renormalization approach", "random walk", "self-affine quenched random potential" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review E", "year": 2010, "month": "Jan", "volume": 81, "number": 1, "pages": "011138" }, "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010PhRvE..81a1138M" } } }