{ "id": "0909.5487", "version": "v1", "published": "2009-09-30T03:13:48.000Z", "updated": "2009-09-30T03:13:48.000Z", "title": "Integral homology of loop groups via Langlands dual groups", "authors": [ "Zhiwei Yun", "Xinwen Zhu" ], "comment": "23 pages", "categories": [ "math.RT", "math.AT" ], "abstract": "Let K be a connected compact Lie group, and G be its complexification. The homology of the based loop group \\Omega K with integer coefficients is naturally a \\ZZ-Hopf algebra. After possibly inverting 2 or 3, we identify H_*(\\Omega K,\\ZZ) with the Hopf algebra of algebraic functions on B^\\vee_e, where B^\\vee is a Borel subgroup of the Langlands dual group scheme G^\\vee of G and B^\\vee_e is the centralizer in B^\\vee of a regular nilpotent element e\\in\\Lie B^\\vee. We also give a similar interpretation for the equivariant homology of \\Omega K under the maximal torus action.", "revisions": [ { "version": "v1", "updated": "2009-09-30T03:13:48.000Z" } ], "analyses": { "subjects": [ "57T10", "20G07" ], "keywords": [ "loop group", "integral homology", "langlands dual group scheme", "connected compact lie group", "regular nilpotent element" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.5487Y" } } }