{ "id": "0909.4669", "version": "v1", "published": "2009-09-25T11:34:06.000Z", "updated": "2009-09-25T11:34:06.000Z", "title": "The Real Powers of the Convolution of a Gamma Distribution and a Bernoulli Distribution", "authors": [ "Ben Salah Nahla", "Masmoudi Afif" ], "comment": "Please, i would submit our paper to math arxiv", "categories": [ "math.PR" ], "abstract": "In this paper, we essentially compute the set of $x,y>0$ such that the mapping $z \\longmapsto \\Big{(}1-r+r e^z\\Big{)}^x \\Big{(}\\dis\\frac{\\lambda}{\\lambda-z}\\Big{)}^{y}$ is a Laplace transform. If $X$ and $Y$ are two independent random variables which have respectively Bernoulli and Gamma distributions, we denote by $\\mu$ the distribution of $X+Y.$ The above problem is equivalent to finding the set of $x>0$ such that $\\mu^{{\\ast}x}$ exists.", "revisions": [ { "version": "v1", "updated": "2009-09-25T11:34:06.000Z" } ], "analyses": { "subjects": [ "60E07", "60E10" ], "keywords": [ "gamma distribution", "bernoulli distribution", "real powers", "convolution", "independent random variables" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.4669S" } } }