{ "id": "0909.4595", "version": "v2", "published": "2009-09-25T03:43:04.000Z", "updated": "2009-10-24T04:56:06.000Z", "title": "Riesz transforms associated to Schrödinger operators with negative potentials", "authors": [ "Joyce Assaad" ], "categories": [ "math.FA" ], "abstract": "The goal of this paper is to study the Riesz transforms $\\na A^{-1/2}$ where $A$ is the Schr\\\"odinger operator $-\\D-V, V\\ge 0$, under different conditions on the potential $V$. We prove that if $V$ is strongly subcritical, $\\na A^{-1/2}$ is bounded on $L^p(\\R^N)$, $N\\ge3$, for all $p\\in(p_0';2]$ where $p_0'$ is the dual exponent of $p_0$ where $2<\\frac{2N}{N-2}", "revisions": [ { "version": "v2", "updated": "2009-10-24T04:56:06.000Z" } ], "analyses": { "keywords": [ "riesz transforms", "schrödinger operators", "negative potentials", "dual exponent" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.4595A" } } }