{ "id": "0909.4262", "version": "v5", "published": "2009-09-23T18:09:26.000Z", "updated": "2012-10-09T09:32:18.000Z", "title": "Ranks of tensors and a generalization of secant varieties", "authors": [ "Jarosław Buczyński", "J. M. Landsberg" ], "comment": "22 pages; final published version; Linear Algebra and its Applications 2012", "journal": "Linear Algebra and Its Applications 438 (2013), pp. 668-689 (Special Issue \"Tensors and Multilinear Algebra\")", "doi": "10.1016/j.laa.2012.05.001", "categories": [ "math.AG" ], "abstract": "We introduce subspace rank as a tool for studying ranks of tensors and X-rank more generally. We derive a new upper bound for the rank of a tensor and determine the ranks of partially symmetric tensors in C^2 \\otimes C^b \\otimes C^b. We review the literature from a geometric perspective.", "revisions": [ { "version": "v5", "updated": "2012-10-09T09:32:18.000Z" } ], "analyses": { "subjects": [ "14Q20", "15A69", "15A21" ], "keywords": [ "secant varieties", "generalization", "upper bound", "partially symmetric tensors", "subspace rank" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.4262B" } } }