{ "id": "0909.3803", "version": "v1", "published": "2009-09-21T15:34:53.000Z", "updated": "2009-09-21T15:34:53.000Z", "title": "Regularity and uniqueness of the first eigenfunction for singular fully non linear operators", "authors": [ "Isabeau Birindelli", "Francoise Demengel" ], "comment": "30 pages, 1 figure", "categories": [ "math.AP" ], "abstract": "In this article we prove that solutions of singular fully nonlinear partial differential equations are $C^{1,\\beta}$. We also prove the simplicity of the principal eigenvalues for the Dirichlet Problem associated to these operators using that regularity, a strict comparison principle and Sard's theorem.", "revisions": [ { "version": "v1", "updated": "2009-09-21T15:34:53.000Z" } ], "analyses": { "subjects": [ "35J60", "35P30" ], "keywords": [ "singular fully non linear operators", "nonlinear partial differential equations", "first eigenfunction", "fully nonlinear partial differential", "regularity" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }