{ "id": "0909.3695", "version": "v1", "published": "2009-09-21T06:53:32.000Z", "updated": "2009-09-21T06:53:32.000Z", "title": "An Improvement on Vizing's Conjecture", "authors": [ "Yunjian Wu" ], "comment": "4 pages", "categories": [ "math.CO" ], "abstract": "Let $\\gamma(G)$ denote the domination number of a graph $G$. A {\\it Roman domination function} of a graph $G$ is a function $f: V\\to\\{0,1,2\\}$ such that every vertex with 0 has a neighbor with 2. The {\\it Roman domination number} $\\gamma_R(G)$ is the minimum of $f(V(G))=\\Sigma_{v\\in V}f(v)$ over all such functions. Let $G\\square H$ denote the Cartesian product of graphs $G$ and $H$. We prove that $\\gamma(G)\\gamma(H) \\leq \\gamma_R(G\\square H)$ for all simple graphs $G$ and $H$, which is an improvement of $\\gamma(G)\\gamma(H) \\leq 2\\gamma(G\\square H)$ given by Clark and Suen \\cite{CS}, since $\\gamma(G\\square H)\\leq \\gamma_R(G\\square H)\\leq 2\\gamma(G\\square H)$.", "revisions": [ { "version": "v1", "updated": "2009-09-21T06:53:32.000Z" } ], "analyses": { "keywords": [ "vizings conjecture", "improvement", "roman domination function", "roman domination number", "simple graphs" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.3695W" } } }