{ "id": "0909.3107", "version": "v1", "published": "2009-09-16T20:33:03.000Z", "updated": "2009-09-16T20:33:03.000Z", "title": "An upper bound for the height for regular affine automorphisms of A^n", "authors": [ "ChongGyu Lee" ], "categories": [ "math.NT", "math.AG" ], "abstract": "In 2006, Kawaguchi proved a lower bound for height of h(f(P)) when f is a regular affine automorphism of A^2, and he conjectured that a similar estimate is also true for regular affine automorphisms of A^n for n>2. In this paper we prove Kawaguchi's conjecture. This implies that Kawaguchi's theory of canonical heights for regular affine automorphisms of projective space is true in all dimensions.", "revisions": [ { "version": "v1", "updated": "2009-09-16T20:33:03.000Z" } ], "analyses": { "subjects": [ "37P30", "11G50", "32H50", "37P05" ], "keywords": [ "regular affine automorphism", "upper bound", "lower bound", "similar estimate", "kawaguchis conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.3107L" } } }