{ "id": "0909.2552", "version": "v1", "published": "2009-09-14T14:09:57.000Z", "updated": "2009-09-14T14:09:57.000Z", "title": "Linear Weingarten surfaces foliated by circles in Minkowski space", "authors": [ "Ozgur Boyacioglu Kalkan", "Rafael López", "Derya Saglam" ], "comment": "22 pages", "categories": [ "math.DG" ], "abstract": "In this work, we study spacelike surfaces in Minkowski space $E_1^3$ foliated by pieces of circles and that satisfy a linear Weingarten condition of type $a H+b K=c$, where $a,b$ and $c$ are constant and $H$ and $K$ denote the mean curvature and the Gauss curvature respectively. We show that such surfaces must be surfaces of revolution or surfaces with constant mean curvature H=0 or surfaces with constant Gauss curvature K=0.", "revisions": [ { "version": "v1", "updated": "2009-09-14T14:09:57.000Z" } ], "analyses": { "subjects": [ "53A10" ], "keywords": [ "linear weingarten surfaces", "minkowski space", "constant mean curvature", "constant gauss curvature", "linear weingarten condition" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.2552B" } } }