{ "id": "0909.2545", "version": "v2", "published": "2009-09-14T13:33:35.000Z", "updated": "2010-07-15T10:53:03.000Z", "title": "An adelic extension of the Jones polynomial", "authors": [ "Jesus Juyumaya", "Sofia Lambropoulou" ], "comment": "15 pages, 1 figure", "journal": "1. M. Banagl, D. Vogel (eds.) The mathematics of knots, Contributions in the Mathematical and Computational Sciences, Vol. 1, Springer 2010", "categories": [ "math.GT", "math.QA" ], "abstract": "In this paper we represent the classical braids in the Yokonuma--Hecke and the adelic Yokonuma--Hecke algebras. More precisely, we define the completion of the framed braid group and we introduce the adelic Yokonuma--Hecke algebras, in analogy to the $p$--adic framed braids and the $p$--adic Yokonuma--Hecke algebras introduced in \\cite{jula,jula2}. We further construct an adelic Markov trace, analogous to the $p$--adic Markov trace constructed in \\cite{jula2}, and using the traces in \\cite{ju} and the adelic Markov trace we define topological invariants of classical knots and links, upon imposing some condition. Each invariant satisfies a cubic skein relation coming from the Yokonuma--Hecke algebra.", "revisions": [ { "version": "v2", "updated": "2010-07-15T10:53:03.000Z" } ], "analyses": { "subjects": [ "57M27", "20F38", "20F36", "20C08" ], "keywords": [ "jones polynomial", "adelic extension", "adelic markov trace", "adelic yokonuma-hecke algebras", "adic markov trace" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.2545J" } } }