{ "id": "0909.2042", "version": "v1", "published": "2009-09-10T20:08:09.000Z", "updated": "2009-09-10T20:08:09.000Z", "title": "Stable hypersurfaces with constant scalar curvature in Euclidean spaces", "authors": [ "Hilário Alencar", "Walcy Santos", "Detang Zhou" ], "categories": [ "math.DG" ], "abstract": "We obtain some nonexistence results for complete noncompact stable hyppersurfaces with nonnegative constant scalar curvature in Euclidean spaces. As a special case we prove that there is no complete noncompact strongly stable hypersurface $M$ in $\\mathbb{R}^{4}$ with zero scalar curvature $S_2$, nonzero Gauss-Kronecker curvature and finite total curvature (i.e. $\\int_M|A|^3<+\\infty$).", "revisions": [ { "version": "v1", "updated": "2009-09-10T20:08:09.000Z" } ], "analyses": { "subjects": [ "53C42" ], "keywords": [ "euclidean spaces", "nonzero gauss-kronecker curvature", "zero scalar curvature", "nonnegative constant scalar curvature", "finite total curvature" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.2042A" } } }