{ "id": "0909.1612", "version": "v1", "published": "2009-09-09T02:25:43.000Z", "updated": "2009-09-09T02:25:43.000Z", "title": "$q,t$-Catalan numbers and generators for the radical ideal defining the diagonal locus of $(\\C^2)^n$", "authors": [ "Kyungyong Lee", "Li Li" ], "comment": "29 pages", "categories": [ "math.CO", "math.AC" ], "abstract": "Let $I$ be the ideal generated by alternating polynomials in two sets of $n$ variables. Haiman proved that the $q,t$-Catalan number is the Hilbert series of the graded vector space $M(=\\bigoplus_{d_1,d_2}M_{d_1,d_2})$ spanned by a minimal set of generators for $I$. In this paper we give simple upper bounds on $\\text{dim}M_{d_1, d_2}$ in terms of partition numbers, and find all bi-degrees $(d_1,d_2)$ such that $\\dim M_{d_1, d_2}$ achieve the upper bounds. For such bi-degrees, we also find explicit bases for $M_{d_1, d_2}$. The main idea is to define and study a nontrivial linear map from $M$ to a polynomial ring $\\C[\\rho_1, \\rho_2,...]$.", "revisions": [ { "version": "v1", "updated": "2009-09-09T02:25:43.000Z" } ], "analyses": { "subjects": [ "05E15", "05E40" ], "keywords": [ "catalan number", "radical ideal defining", "diagonal locus", "generators", "nontrivial linear map" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.1612L" } } }