{ "id": "0909.1166", "version": "v2", "published": "2009-09-07T10:03:43.000Z", "updated": "2009-10-12T14:24:31.000Z", "title": "Desingularization of vortices for the Euler equation", "authors": [ "Didier Smets", "Jean Van Schaftingen" ], "comment": "40 pages", "journal": "Arch. Rat. Mech. Anal. 198 (2010), no. 3, 869-925", "doi": "10.1007/s00205-010-0293-y", "categories": [ "math.AP" ], "abstract": "We study the existence of stationary classical solutions of the incompressible Euler equation in the plane that approximate singular stationnary solutions of this equation. The construction is performed by studying the asymptotics of equation $-\\eps^2 \\Delta u^\\eps=(u^\\eps-q-\\frac{\\kappa}{2\\pi} \\log \\frac{1}{\\eps})_+^p$ with Dirichlet boundary conditions and $q$ a given function. We also study the desingularization of pairs of vortices by minimal energy nodal solutions and the desingularization of rotating vortices.", "revisions": [ { "version": "v2", "updated": "2009-10-12T14:24:31.000Z" } ], "analyses": { "subjects": [ "35B25", "35J20", "35J65", "35R35", "76B47", "76M30" ], "keywords": [ "desingularization", "minimal energy nodal solutions", "approximate singular stationnary solutions", "dirichlet boundary conditions", "incompressible euler equation" ], "tags": [ "journal article" ], "publication": { "journal": "Archive for Rational Mechanics and Analysis", "year": 2010, "month": "Dec", "volume": 198, "number": 3, "pages": 869 }, "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010ArRMA.198..869S" } } }