{ "id": "0909.1084", "version": "v1", "published": "2009-09-06T14:19:23.000Z", "updated": "2009-09-06T14:19:23.000Z", "title": "A CLT for the $L^{2}$ norm of increments of local times of Lévy processes as time goes to infinity", "authors": [ "Michael B. Marcus", "Jay Rosen" ], "categories": [ "math.PR" ], "abstract": "Let $X=\\{X_{t},t\\in R_{+}\\}$ be a symmetric L\\'{e}vy process with local time $\\{L^{x}_{t} ; (x,t)\\in R^{1}\\times R^{1}_{+}\\}$. When the L\\'{e}vy exponent $\\psi(\\la)$ is regularly varying at zero with index $1<\\beta\\leq 2$, and satisfies some additional regularity conditions, \\begin{eqnarray*} && {\\int_{-\\infty}^{\\infty} (L^{x+1}_{t}- L^{x}_{t})^{2} dx- E(\\int_{-\\infty}^{\\infty} (L^{x+1}_{t}- L^{x}_{t})^{2} dx)\\over t\\sqrt{\\psi^{-1}(1/t)}}\\label{r5.0tweaksabs} && \\stackrel{\\mathcal{L}}{\\Longrightarrow}(8c_{\\psi,1 })^{1/2}(\\int_{-\\infty}^{\\finfty} (L_{\\beta,1}^{x})^{2} dx)^{1/2} \\eta \\end{eqnarray*} as $t\\rar\\infty$, where $L_{\\bb,1}=\\{L^{x}_{\\beta, 1} ; x \\in R^{1} \\}$ denotes the local time, at time 1, of a symmetric stable process with index $\\beta$, $\\eta$ is a normal random variable with mean zero and variance one that is independent of $L_{\\beta,1}$, and $c_{\\psi,1}$ is a known constant that depends on $\\psi$.", "revisions": [ { "version": "v1", "updated": "2009-09-06T14:19:23.000Z" } ], "analyses": { "subjects": [ "60F05", "60J55", "60G51" ], "keywords": [ "local time", "lévy processes", "increments", "additional regularity conditions", "mean zero" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.1084M" } } }