{ "id": "0909.0969", "version": "v3", "published": "2009-09-04T21:50:02.000Z", "updated": "2010-07-01T16:38:55.000Z", "title": "Purity results for $p$-divisible groups and abelian schemes over regular bases of mixed characteristic", "authors": [ "Adrian Vasiu", "Thomas Zink" ], "comment": "28 pages. Final version identical (modulo style) to the galley proofs. To appear in Doc. Math", "journal": "Doc. Math. 15 (2010), 571--599", "categories": [ "math.AG", "math.NT" ], "abstract": "Let $p$ be a prime. Let $(R,\\ideal{m})$ be a regular local ring of mixed characteristic $(0,p)$ and absolute index of ramification $e$. We provide general criteria of when each abelian scheme over $\\Spec R\\setminus\\{\\ideal{m}\\}$ extends to an abelian scheme over $\\Spec R$. We show that such extensions always exist if $e\\le p-1$, exist in most cases if $p\\le e\\le 2p-3$, and do not exist in general if $e\\ge 2p-2$. The case $e\\le p-1$ implies the uniqueness of integral canonical models of Shimura varieties over a discrete valuation ring $O$ of mixed characteristic $(0,p)$ and index of ramification at most $p-1$. This leads to large classes of examples of N\\'eron models over $O$. If $p>2$ and index $p-1$, the examples are new.", "revisions": [ { "version": "v3", "updated": "2010-07-01T16:38:55.000Z" } ], "analyses": { "subjects": [ "11G10", "11G18", "14F30", "14G35", "14G40", "14K10", "14K15", "14L05", "14L15", "14J20" ], "keywords": [ "abelian scheme", "mixed characteristic", "regular bases", "purity results", "divisible groups" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.0969V" } } }