{ "id": "0909.0716", "version": "v2", "published": "2009-09-03T17:15:14.000Z", "updated": "2011-07-31T16:17:21.000Z", "title": "On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below", "authors": [ "Shijin Zhang" ], "comment": "15 pages. Added some references and an appendix to give a more simple computation of the volume estimate", "journal": "Acta Mathematica Sinica, Einglish series. vol. 27, 2011, 871-882", "doi": "10.1007/s10114-011-9527-7", "categories": [ "math.DG" ], "abstract": "In this note, we obtain a sharp volume estimate for complete gradient Ricci solitons with scalar curvature bounded below by a positive constant. Using Chen-Yokota's argument we obtain a local lower bound estimate of the scalar curvature for the Ricci flow on complete manifolds. Consequently, one has a sharp estimate of the scalar curvature for expanding Ricci solitons; we also provide a direct (elliptic) proof of this sharp estimate. Moreover, if the scalar curvature attains its minimum value at some point, then the manifold is Einstein.", "revisions": [ { "version": "v2", "updated": "2011-07-31T16:17:21.000Z" } ], "analyses": { "subjects": [ "53C20" ], "keywords": [ "sharp volume estimate", "scalar curvature", "sharp estimate", "complete gradient ricci solitons", "local lower bound estimate" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.0716Z" } } }