{ "id": "0909.0590", "version": "v2", "published": "2009-09-03T08:29:49.000Z", "updated": "2009-09-24T09:15:40.000Z", "title": "Small surfaces of Willmore type in Riemannian manifolds", "authors": [ "T. Lamm", "J. Metzger" ], "comment": "25 pages. Minor corrections", "categories": [ "math.DG", "math.AP" ], "abstract": "In this paper we investigate the properties of small surfaces of Willmore type in Riemannian manifolds. By \\emph{small} surfaces we mean topological spheres contained in a geodesic ball of small enough radius. In particular, we show that if there exist such surfaces with positive mean curvature in the geodesic ball $B_r(p)$ for arbitrarily small radius $r$ around a point $p$ in the Riemannian manifold, then the scalar curvature must have a critical point at $p$. As a byproduct of our estimates we obtain a strengthened version of the non-existence result of Mondino \\cite{Mondino:2008} that implies the non-existence of certain critical points of the Willmore functional in regions where the scalar curvature is non-zero.", "revisions": [ { "version": "v2", "updated": "2009-09-24T09:15:40.000Z" } ], "analyses": { "keywords": [ "riemannian manifold", "small surfaces", "willmore type", "geodesic ball", "scalar curvature" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.0590L" } } }