{ "id": "0909.0523", "version": "v1", "published": "2009-09-02T20:23:57.000Z", "updated": "2009-09-02T20:23:57.000Z", "title": "Property $C$ and applications to inverse problems", "authors": [ "A. G. Ramm" ], "categories": [ "math-ph", "math.MP" ], "abstract": "Let $\\ell_j:=-\\frac{d^2}{dx^2}+k^2q_j(x),$ $k=const>0, j=1,2,$ $00,$ where $p\\in M$ is an arbitrary fixed function, and $u_j$ solves the problem $\\ell_ju_j=0,\\quad 0\\leq x\\leq 1,\\quad u'_j(0,k)=0,\\quad u_j(0,k)=1.$ If $(*)$ implies $h=0$, then the pair $\\{\\ell_1,\\ell_2\\}$ is said to have property $C$ on the set $M$. This property is proved for the pair $\\{\\ell_1,\\ell_2\\}$. Applications to some inverse problems for a heat equation are given. the set $M$. This property is proved for the pair", "revisions": [ { "version": "v1", "updated": "2009-09-02T20:23:57.000Z" } ], "analyses": { "subjects": [ "35R30", "74J25", "34E05" ], "keywords": [ "inverse problems", "applications", "heat equation", "arbitrary fixed function", "discontinuity points" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.0523R" } } }