{ "id": "0909.0103", "version": "v2", "published": "2009-09-01T06:31:30.000Z", "updated": "2010-03-02T19:46:20.000Z", "title": "The expected number of inversions after n adjacent transpositions", "authors": [ "Mireille Bousquet-Mélou" ], "categories": [ "math.CO", "math.PR" ], "abstract": "We give a new expression for the expected number of inversions in the product of n random adjacent transpositions in the symmetric group S_{m+1}. We then derive from this expression the asymptotic behaviour of this number when n scales with m in various ways. Our starting point is an equivalence, due to Eriksson et al., with a problem of weighted walks confined to a triangular area of the plane.", "revisions": [ { "version": "v2", "updated": "2010-03-02T19:46:20.000Z" } ], "analyses": { "subjects": [ "05A05", "05A15", "05A16", "60J10" ], "keywords": [ "expected number", "inversions", "random adjacent transpositions", "triangular area", "symmetric group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.0103B" } } }