{ "id": "0909.0086", "version": "v2", "published": "2009-09-01T04:44:10.000Z", "updated": "2010-02-16T03:45:31.000Z", "title": "$(q,t)$-deformations of multivariate hook product formulae", "authors": [ "Soichi Okada" ], "comment": "Improvement of Proposition 4.5 and minor revision", "categories": [ "math.CO" ], "abstract": "We generalize multivariate hook product formulae for $P$-partitions. We use Macdonald symmetric functions to prove a $(q,t)$-deformation of Gansner's hook product formula for the generating functions of reverse (shifted) plane partitions. (The unshifted case has also been proved by Adachi.) For a $d$-complete poset, we present a conjectural $(q,t)$-deformation of Peterson--Proctor's hook product formula.", "revisions": [ { "version": "v2", "updated": "2010-02-16T03:45:31.000Z" } ], "analyses": { "subjects": [ "05E05" ], "keywords": [ "deformation", "gansners hook product formula", "peterson-proctors hook product formula", "generalize multivariate hook product formulae", "macdonald symmetric functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0909.0086O" } } }